您的位置 首页 Excel

什么叫完全平方数概念 平方数的公式

什么叫完全平方数

完全平方指用一个整数乘以自己例如1*1,2*2,3*3等,依此类推。

若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数。

完全平方数是非负数,而一个完全平方数的项有两个。

扩展资料:

完全平方数的重要结论:

1个位数是2、3、7、8的整数一定不是完全平方数;

2、个位数和十位数都是奇数的整数一定不是完全平方数;

3、个位数是6,十位数是偶数的整数一定不是完全平方数;

4、形如3n+2型的整数一定不是完全平方数;

5、形如4n+2和4n+3型的整数一定不是完全平方数;

6、形如5n±2型的整数一定不是完全平方数;

7、形如8n+2,8n+3,8n+5,8n+6,8n+7型的整数一定不是完全平方数;

8、数字和是2、3、5、6、8的整数一定不是完全平方数;

9、四平方和定理:每个正整数均可表示为4个整数的平方和;

10、完全平方数的因数个数一定是奇数。

延伸阅读

完全平方数特征

性质1:完全平方数的末位数只能是0,1,4,5,6,9。

性质2:奇数的平方的个位数字为奇数,十位数字为偶数。

证明 奇数必为下列五种形式之一:

10a+1, 10a+3, 10a+5, 10a+7, 10a+9

分别平方后,得

(10a+1)^2=100+20a+1=20a(5a+1)+1

(10a+3)^2=100+60a+9=20a(5a+3)+9

(10a+5)^2=100+100a+25=20 (5a+5a+1)+5

(10a+7)^2=100+140a+49=20 (5a+7a+2)+9

(10a+9)^2=100+180a+81=20 (5a+9a+4)+1

综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。

性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。

证明 已知=10k+6,证明k为奇数。因为的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。则

10k+6=(10n+4)=100+(8n+1)x10+6

或 10k+6=(10n+6)=100+(12n+3)x10+6

即 k=10+8n+1=2(5+4n)+1

或 k=10+12n+3=2(5+6n)+3

∴ k为奇数。

推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。

推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。

性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。

这是因为 (2k+1)=4k(k+1)+1

(2k)=4

性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。

在性质4的证明中,由k(k+1)一定为偶数可得到(2k+1)是8n+1型的数;由为奇数或偶数可得(2k)为8n型或8n+4型的数。

性质6:平方数的形式必为下列两种之一:3k,3k+1。

因为自然数被3除按余数的不同可以分为三类:3m,3m+1, 3m+2。平方后,分别得

(3m)=9=3k

(3m+1)=9+6m+1=3k+1

(3m+2)=9+12m+4=3k+1

同理可以得到:

性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。

性质8:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。

除了上面关于个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和。例如,256它的各位数字相加为2+5+6=13,13叫做256的各位数字和。如果再把13的各位数字相加:1+3=4,4也可以叫做256的各位数字的和。下面我们提到的一个数的各位数字之和是指把它的各位数字相加,如果得到的数字之和不是一位数,就把所得的数字再相加,直到成为一位数为止。我们可以得到下面的命题:

一个数的数字和等于这个数被9除的余数。

下面以四位数为例来说明这个命题。

设四位数为,则

= 1000a+100b+10c+d

= 999a+99b+9c+(a+b+c+d)

= 9(111a+11b+c)+(a+b+c+d)

显然,a+b+c+d是四位数被9除的余数。

对於n位数,也可以仿此法予以证明。

关於完全平方数的数字和有下面的性质:

性质9:完全平方数的数字之和只能是0,1,4,7,9。

证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而

(9k)=9(9)+0

(9k±1)=9(9±2k)+1

(9k±2)=9(9±4k)+4

(9k±3)=9(9±6k)+9

(9k±4)=9(9±8k+1)+7

完全平方数有哪些

完全平方数是这样一种数:它可以写成一个正整数的平方。例如,36是6×6,49是7×7。 你知道吗? 从1开始的n个奇数的和是一个完全平方数,n2——即: 1+3+5+7+……+(2n-1)=n2。 例如1+3+5+7+9=25=52。 每一个完全平方数的末位数是: 0,1,4,5,6,或9。 每一个完全平方数要末能被3整除,要末减去1能被3整除。 每一个完全平方数要末能被4整除,要末减去1能被4整除。 每一个完全平方数要末能被5整除,要末加上1或减去1能被5整除。


返回顶部